j'ai un exercice et je bloque sur quelques questions :
1-Calculer pour le satellite la distance qui sépare les points situés à l'équateur survolés lors de deux révolutions consécutives ?
Sachant que le satellite a une période de 100 minutes et une inclinaison de 98°
Si vous avez une idée merci
tu peux être plus clair stp ?? ça à l'air sympa.
Voici ce que j'ai compris : un satellite a une orbite inclinée de 98° par rapport à l'équateur (ou 82°, c'est pareil) et on doit calculer dist(sat, équateur) c'est ça ?
En revanche je capt pas les deux révolutions.
essaye de joindre un schéma
à ttes
Si j'ai bien interprété la question.
Dans un référentiel géocentrique, la Terre fait 1 tour sur-elle même, autour de son axe polaire, en 24 h (environ)
100 minutes = 24 heures/14,4
En une révolution du satellite, la Terre a donc tourné autour de son axe polaire de 1/14,4 tour
La circonférence de la Terre à l'équateur est : L = 2*Pi*6370 = 40024 km (environ)
En 100 min, un point de l'équateur a donc bougé de 40024/14,4 = 2280 km
La distance qui sépare les points situés à l'équateur survolés lors de deux révolutions consécutives du satellite est de 2280 km
-----
Sauf distraction.
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :