Bonjour,
Pouvez-vous m'aider à comprendre ce qcm ?
"Une auto roule à vitesse constante sur une route rectiligne. Sur une distance donnée, le travail de la force motrice correspond :
- à l'énergie cinétique de l'auto
- au travail des forces de frottement quel que soit la route
- au travail des forces de frottement si la route est horizontale
- à l'énergie potentielle de l'auto "
(Mes notations : Fm = force motrice ; Ek = énergie cinétique ; P = poids ; N = normale)
J'hésite entre deux approches :
A) WFm = Ek finale - Ek initiale
= 0,5*mvf² - 0,5*mvi² or vf = vi puisque vitesse constante
= 0
B) WFm = \vec{Fm}.\vec{d} = Fm*d*Cos(a) (1)
Or, v est constante donc je peux appliquer la première loi de Newton (la somme des forces vaut 0) donc :
- selon l'axe des x : Ff = Fm
- selon l'axe des y : N = P
J'écris donc (1) en remplacant Fm par Ff :
WFm = Ff*d*Cos a (1)
Donc avec la première méthode j'ai un W nul et avec l'autre un W non nul, quelqu'un pour m'expliquer le raisonnement à adopter ?
Première approche :
Elle est basée sur une erreur : La variation d'énergie cinétique est égale à la somme des travaux de toutes les forces qui s'exercent et pas uniquement au travail de la force motrice.
Deuxième approche :
L'égalité entre N et P n'est vraie que si la route est horizontale.
Mon conseil :
Ecrire l'équation provenant du théorème de l'énergie cinétique en faisant intervenir toutes les forces ( il y en a quatre) qui s'exercent.
Bonjour odbugt1,
4 forces existent :
selon y --> la normale N dirigé vers le haut et le poids P vers le bas
selon x --> la force de frottement Ff dirigé à gauche par exemple et la force motrice Fm vers la droite.
(Je considère un repère x,y orienté respectivement vers la droite et vers le haut)
Pour la première approche donc si je comprends j'aurais du écrire :
WFm - WFf + WP - WN = Ek
= Ek final - Ek initial
= 0,5 mvfinale² - 0,5 mvinitial² (Or vf = vi)
= 0
Donc la proposition A est fausse car ce n'est pas Wfm qui vaut la variation de Ek mais la somme des W.
La proposition B est fausse car si la route est oblique, la composante x du poids intervient également donc Wfm = WPx + WFf
La proposition C est correct.
Et comment justifier que la proposition D est fausse ? La variation de Ep = somme des W ?
merci
Les propositions a) et d) sont fausses :
Le travail d'une force n'est pas égal à une énergie, mais à une variation d'énergie.
Théorème de l'énergie cinétique :
La variation d'énergie cinétique de l'automobile est égale à la somme des travaux des forces qui s'exercent sur elle.
La vitesse de l'automobile est constante donc son énergie cinétique l'est aussi et la variation de cette énergie cinétique est nulle.
On en retire que
La réaction de la route étant perpendiculaire à celle-ci son travail est nul :
Donc et par suite
Si la route est inclinée le travail de n'est pas nul car la direction de
n'est pas perpendiculaire à celle de la route : La proposition b) est fausse.
Si la route est horizontale le travail de est nul et dans ce cas
soit en valeur absolue
Conclusion :
On voit donc que seule la proposition c) : " Le travail de la force motrice correspond au travail des forces de frottement si la route est horizontale " est exacte.
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :