Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Oscillations Mécaniques

Posté par
aua
10-02-24 à 15:14

Bonjour, je rencontre des difficultés à comprendre un exercice. J'ai besoin d'aide. Voici l'énoncé.
On considère un pendule élastique horizontal (voir croquis). Il est formé d'un ressort de raideur k=10N /m et d'un solide de masse m = 100g On écarte le solide de 5 cm de sa position d'équilibre puis on l'abandonne sans vitesse.
1) Ecrire l'équation différentielle du mouvement du solide. Ecrire l'équation horaire du mouvement. On choisira comme instant de date 0, l'instant où le solide passe par sa position d'équilibre déplaçant dans le sens positif.
2) Ecrire l'équation horaire de la vitesse.
Calculer les vitesses du solide:
au moment où il passe par sa position d'équilibre;
au moment où il passe par le point d'abscisse
- 2,5cm.

Posté par
aua
re : Oscillations Mécaniques 10-02-24 à 15:19

Je suis bloqué a la deuxième question
quand l énoncé dit ''On choisira comme instant de date 0, l'instant où le solide passe par sa position d'équilibre déplaçant dans le sens positif.''
c'est a dire qu'à t0 c est la position du solide quand on l'écarte et on le lâche ou bien plutôt c'est à la position d'équilibre ?

Posté par
krinn Correcteur
re : Oscillations Mécaniques 10-02-24 à 15:57

Bonjour,
Ça me paraît clair:
A l'instant t=0, le solide se trouve à la position d 'equilibre et sa vitesse est dans le sens positif (il faudrait poster la figure pour voir le repère utilisé)

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 16:45

Bonjour désolé de répondre aussi tard
Je vois maintenant.
Pour trouver l'équation du mouvement
Vu que la solution de l'équation admet une solution de la forme xmax cos(wt+fi)
A t=0, x=x(équilibre)x(eq)=xmax cos(fi)
J ai pensé à déterminer le x(équilibre) sauf que le ressort est horizontale et donc je trouve T=0 donc cela signifierait que x(eq)=0 ??

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 16:58

voici le schéma proposé par l'énoncé

Oscillations Mécaniques

Posté par
krinn Correcteur
re : Oscillations Mécaniques 11-02-24 à 18:46

Avant de parler d'équation diff. ou d'équation du mouvement, il faudrait déjà preciser:
Le systeme: ici c'est le solide
le référentiel d'etude: .....
et ensuite le repère utilisé!
Car tant que x n'est pas défini on va avoir du mal à faire de la mécanique....
La figure n'a pas l air tres précise, y a-t-il un axe orienté indiqué sur la droite au moins? ou un repèrage décrit dans l'énoncé?

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 19:10

Dans l'énoncé on nous a dit quand on a écarté le ressort cela s'est fait le sens positif donc je suppose que l'axe de x sera orienté vers la droite
1) équation différentielle
Système solide
Référenciel terrestre supposé galiléen
Bilan des forces : Poids, Tension du ressort et réaction
Tci : T(vect)+P(vect)+R(vect)=ma(vect)
Suivant xx':
-T=m(d²x/dt²) (k/m)x+(d²x/dt²)=0
C'est bon?

Posté par
krinn Correcteur
re : Oscillations Mécaniques 11-02-24 à 19:24

C'est ça mais il faut bien préciser auparavant le repère (O,x) utilisé et donc definir la coordonnee x, voir figure ci-dessous , sinon ça ne veut rien dire.

Oscillations Mécaniques

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 19:39

D'accord
Ensuite pour la question 2
La solution de l'équation différentielle est de la forme x=xmax cos(wt+fi)
A t=0, x=x(eq) x(eq)=xmax cos(fi)
Pour déterminer x equ j'ai pensé à utiliser la condition d'équilibre mais j'ai l'impression que ça mène à rien

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 19:41

krinn @ 11-02-2024 à 19:24

definir la coordonnee x, voir figure ci-dessous , sinon ça ne veut rien dire.

Oscillations Mécaniques

Le x c'est l'allongement du ressort à l'équilibre dans mon équation différentielle

Posté par
krinn Correcteur
re : Oscillations Mécaniques 11-02-24 à 19:53

aua @ 11-02-2024 à 19:41

[
Le x c'est l'allongement du ressort à l'équilibre dans mon équation différentielle


Attention: dans le repère (O,x) choisi plus haut, O est la position d'équilibre du solide ( ici à l'equilibre, l'allongement du ressort = ..... ) et x est juste l'allongement du ressort.

L'allongement à l'équilibre est .... pour un ressort horizontal.

Et donc ici avec notre repère, xeq vaut ..... par définition de O.

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 20:36

X(eq)=0
Du coup X(eq)=Xmax cos(fi) entraîne que Xmax cos(fi)=0
cos(fi)=0 ?

Posté par
krinn Correcteur
re : Oscillations Mécaniques 11-02-24 à 21:43

Oui, et x max est connu ici

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 22:34

D'accord je vois merci !
Avec fi=90 degré c ça ?

Posté par
krinn Correcteur
re : Oscillations Mécaniques 11-02-24 à 23:01

Ou -90°
Et pour trancher il faut utiliser le fait que le solide se dirige vers les x positifs à t=0

Posté par
aua
re : Oscillations Mécaniques 11-02-24 à 23:03

Ohh ok je vois merci beaucoup !  

Posté par
krinn Correcteur
re : Oscillations Mécaniques 11-02-24 à 23:05

Et donc tu trouves: x(t) = ...... ?

Posté par
aua
re : Oscillations Mécaniques 12-02-24 à 20:18

x(t)=5.10-² cos(10t+(pi/2))

Posté par
aua
re : Oscillations Mécaniques 12-02-24 à 20:26

2) équation horaire de la vitesse
En dérivant je trouve:
V(t)=-0,5sin(10t+(pi/2))

Vitesse du solide
Qd il passe par sa position d'équilibre :
V(t=0)=-0,5m/s
Qd il passe par x=-2,5cm
A x=2,5.10-² m, on a : -2,5.10-²=5.10-² cos(10t+(pi/2))
Cos(10t+(pi/2))=-1/2
Donc t=pi/60 ou t=-7pi/60 ( impossible)
V(t=pi/60)= -0,4 m/s

Posté par
aua
re : Oscillations Mécaniques 12-02-24 à 20:26

C'est ça ?

Posté par
krinn Correcteur
re : Oscillations Mécaniques 12-02-24 à 22:00

aua @ 12-02-2024 à 20:26

2)
Vitesse du solide
Qd il passe par sa position d'équilibre :
V(t=0)=-0,5m/s


n'y a-t-il pas un petit ennui avec cette valeur? Le solide se dirige vers les x positifs en t =0, non? Donc quel est le signe de v(0) ?

Posté par
aua
re : Oscillations Mécaniques 20-02-24 à 22:51

Oui c est vrai normalement j aurais du avoir 0.5 m/s
mais je vois pas du coup ou se trouve l erreur dans mes calculs...

Posté par
aua
re : Oscillations Mécaniques 20-02-24 à 22:52

désolé de répondre si tard je pensais que j'avais bien fait...

Posté par
krinn Correcteur
re : Oscillations Mécaniques 21-02-24 à 09:36

Bonjour,

l'erreur est là:

aua @ 11-02-2024 à 22:34

D'accord je vois merci !
Avec fi=90 degré c ça ?


en fait ici, c'est -90°, je te laisse chercher pourquoi...

Posté par
aua
re : Oscillations Mécaniques 21-02-24 à 20:25

Hmm parce qu' au moment où on va lâcher le solide il se déplace dans le sens négatif ?

Posté par
krinn Correcteur
re : Oscillations Mécaniques 21-02-24 à 20:39

Ce sont les conditions initiales qui comptent pour déterminer les constantes d'integration.

Ici, à t=0, x=0 et on a une deuxième condition qui permet de trouver



Mentions légales - Retrouvez cette page sur l'île de la physique - chimie
© digiSchool 2024

Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 237 fiches de physique

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !