Bonjour,
L'exercice est donc:
La constellation Ariès se situe à 440 millions d'années lumières de la Terre; combien de temps mettrait la lumière
venant de cette constellation pour arriver jusqu'à la Terre ?
J'ai donc fait : V= d/t
t= d/V
400 millions a.l = 4.4E24 m
Donc : 4.4E24 m/ 3,00E8
=( environ) 1,47E23 seconde.
Mais je ne pense pas que se soit la bonne réponse.
Pourriez-vous m'aider s'il vous plaît ?
Merci beaucoup.
Bonjour,
1) Est-ce 440 millions d'années-lumière (comme dans l'énoncé)
ou
est-ce 400 millions d'années-lumière (comme dans ta proposition de solution) ?
2) Comment as-tu converti les années-lumière en mètres ? Quel coefficient as-tu utilisé ?
3) Au tout premier coup d'il on se dit qu'il y a une erreur, car 4.1024 divisé par 3.108 cela fait environ 1,3.1016 (et ce serait des secondes)
4) Faut-il faire tout cela ? Car si la distance est de 440 millions d'années-lumière, alors la lumière met 440 millions d'années pour nous parvenir. Et si tu veux ce résultat en secondes il y a plus simple pour la conversion.
Il faut essayer de comprendre la notion d'année lumière ... et il semble bien que tu ne l'as pas comprise.
La réponse est immédiate (si on a compris ce qu'est une année lumière) :
Combien de temps mettrait la lumière venant de cette constellation pour arriver jusqu'à la Terre ?
Et bien c'est : 440 millions d'années... Tout simplement, sans aucun calcul.
-----
Réfléchis-y
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :