Bonsoir de l'aide svp
On considère un pendule pesant (P), dans le champ de pesanteur terrestre ~g = g~ez
uniforme, constitué :
- d'une tige (T) de forme cylindrique, de longueur l = OC, de dimension latérale
négligeable devant sa longueur et de masse mT
- d'un disque (D) de rayon a, de centre C et de masse mD.
Le disque (D) est solidaire à l'extremité inférieure C de la tige (T).
Le pendule (P) est en mouvement de rotation, via une
liaison pivot parfaite de centre O, autour de l'axe horizontal
(Oy) passant par l'extrémité supérieure O de
la tige (T) et perpendiculaire au plan de la figure 1.
La position du pendule (P) est repérée par l'angle que fait son axe de symétrie avec l'axe vertical (Oz) du référentiel terrestre R(O; x; y; z; t) supposé galiléen.
on étudie le mouvement du pendule dans le plan vertical (Oxz).
4)je veux calculer l'énergie cinétique du pendule. Sachant que dans les questions précedantes j'ai déterminé la vitesse du centre de masse du pendule ainsi que le moment d'inertie du pendule en P , comment je dois faire ? Dois je applique la formule de Konig ou doit je faire Ec=JPw2 /2 ?
j'ignore vraiment dans quel cas je dois utiliser l'un ou l'autre
merci d'avance
Bonjour
Pour l'énergie cinétique : tu as raison. Il te faut calculer le moment d'inertie par rapport à l'axe de rotation en additionnant celui de la tige (T) et celui du disque (D). Pour celui du disque, tu vas être amené à utiliser le théorème de Huygens permettant d'obtenir le moment d'inertie par rapport à l'axe (O,y) en fonction du moment d'inertie par rapport à l'axe (C,y).
oui j'ai deja fait tout ça. c'est comment calculer l'énergie cinétique du pendule que j'ignore comment faire
Tu as fourni l'expression de l'énergie cinétique :
J'imagine que les questions précédentes t'ont permis de déterminer l'expression de en fonction du temps. Cela doit donner quelque chose de la forme :
La vitesse angulaire utile pour exprimer l'énergie cinétique est :
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :