Bonjour,
j'ai trouvé un exercice de thermodynamique plutôt simple mais j'aimerais le faire correctement en justifiant bien.
Voici le sujet :
Soit un système gazeux fermé
A l'état initial
A l'état final
a) Pour une transformation isotherme, calculer ,
,
et
b) De même pour une transformation adiabatique réversible
Question a)
Transformation isotherme donc la température est constante =>
Ensuite en utilisant la relation des gaz parfaits on a :
Or , donc
.
Ainsi =
Pour calculer le travail on utilise celui des forces de pression :
Et on remplace P avec la loi des GP :
On intègre :
Pour une transformation isotherme mais je ne saurais pas le justifier.
D'après le premier principe de la thermodynamique :
Or donc
car la transformation est isotherme
Ainsi
Question b)
La transformation est adiabatique réversible donc on peut utiliser la loi de Laplace :
Aucune information sur le gaz pour savoir quelle valeur de prendre donc je ne mettrais que les applications littérales.
La loi de Laplace peut aussi s'écrire sous cette forme :
Or
Donc
Pour une transformation réversible :
Or pour une transformation adiabatique :
Donc
Au final c'est juste pour le calcul de lors d'une transformation isotherme que j'ai du mal à justifier.
Bonjour
Tout cela me parait correct sous réserve de préciser que la transformation isotherme est réversible. Ainsi, l'entropie créée est nulle ; la variation d'entropie se confond avec l'entropie d'échange :
Dans le cas seulement de la transformation isotherme réversible, cela s'intègre en :
Une faute de rigueur tout de même : à propos de la transformation réversible adiabatique, tu écris :
ce qui conduit à zéro car Q=0 ;
La relation est fausse car la transformation n'est pas isotherme. Il faut écrire dans le cas général :
où Text désigne la température de la source avec laquelle s'effectue le transfert thermique. Si l'évolution est adiabatique, Q=0 pour chaque étape élémentaire de l'évolution, ce qui conduit à une entropie reçue nulle pour une transformation adiabatique. Il y a plus qu'une nuance...
Merci beaucoup pour ces précisions. Ce qui m'intéresse vraiment c'est comprendre ce que je fais et bien justifier au lieu d'appliquer bêtement des formules sans comprendre.
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :