Bonjour à tous,
Voilà un sujet qui me pose beaucoup de problèmes et que je n'arrive pas à résoudre même en tentant plisieurs techniques:
On fait un broyat de plante dans l'au et on décante pour mesurer la tension superficielle. pour cela, au lieu de mesurer la hauteur d'ascension dans un tube capillaire qui risquerait de s'obstruer, on fait flotter sur le liquide un anneau constitué par une bance de film dont les deux extrémités ont été racordées et repère la position de la ligne de flottaison sur la surface latérale de l'anneau.
Le film, parfaitement muoillable par l'eau, a une épaisseur de 0.3 mm et de densité 0.5. Hauteur de l'anneau 11 cm. Diamètre de l'anneau: suffisant pour que ce corps flottant soit en équilibre stable, axe vertical.
Il est gradué le long d'une génératrice directement en tension superficielles A (par exemple, quand le trait marqué 60 affleure la surface du liquide, la tension superficielle A de celui-ci est 60.10-3 N.m-1)
On demande 1) la côte du trait A=o (comptée depuis le bord inférieur)
2) la côte du trait A=73,5.10-3N/m
nb: la densité de l'eau décantée du broyat est quasiment celle de l'eau pure.
on est censé trouver comme réponse:5.5 cm et 0.6 cm
voilà ce que j'ai tenté.
j'ai fait un bialn des forces à l'équilibre:
Fts+P-Fa=0
avec Fts= A (2R+2
r)=A2
(2r+e) avec R le rayon qui va jusqu'au bord externe de l'anneau et r le rayon qui va jusqu'au bord interne de l'anneau. Et e=R-r=0.3 mm
Fa=g Vdép
avec Vdép= (H-h)r2 où H est la hauteur totale de l'aneau et h est la hauteur de l'anneau qui ne contient pas de liquide.
En fait je voulais déterminer r en faisant cette équation mais j'ai beaucoup trop d'inconnues donc je suis totalement bloqué !
en plus quelque chose me parait faux dans les résultats que l'on doit trouver car pour A=0 l'anneau ne devrait pas toucher l'eau, non ?
merci
c'est un exercice de physique ou je dois déterminer les hauteurs immergés d'un tube qui plonge dans de l'eau.
Pour trouver ma première hauteur h, j'ai fait un bilan des forces :
P=Fa où p est le poid et Fa la poussée d'archimède.
tubeH2
re=
(H-h)2
Re
avec H la hauteur totale du tube = 11cm
avec e l'épaisseur des parois du tube = 0.3 cm
avec R le rayon du centre du tube au bord externe du tube
avec tube= 500 kg.m-3 car d=0.5
avec eau= 1000 kg.m-3
donc, tube/
eau=(H-h)/H
et je trouve h=5.5 cm
Or j'ai pu faire cette équation car la tension surperficielle était égale à 0 (Fts=Aliq2(2r+e); où r est le rayon jusqu'au bord interne donc égale à R-e) car Aliq était pris égal à o.
Fts+P-Fa=0
Cependant dans la question suivante A prend une valeur de 0, donc je voulais déterminer R comme ça l'affaire serait résolu mais je bloque complètement donc si quelqu'un pouvait m'aider pour ce calcul je lui serait trés reconnaissant .
*** message déplacé ***
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :