Inscription / Connexion Nouveau Sujet
Niveau école ingénieur
Partager :

Optique : Deux miroirs sphériques en regard

Posté par
Djex
25-10-09 à 19:10

Bonsoir

Voila je suis en révision de partiels et je bloque sur cet exercice ...

On a donc 2 miroirs sphériques en regard, on appelle R leur rayon commun défini positif (déja la je me visualise pas trop le R ! Est ce juste le fait que le rayon des deux miroirs est le même ?) On souhaite que la position de l'objet et de l'image du système soit confondu !

On nous demande de dire si les deux miroirs sont concave ou convexe puis de calculer la distance D entre les 2 miroirs necessaire !

Donc j'aurais aimé avoir une indication sur l'histoire du rayon commun si possible ?? et sinon comment on peut savoir s'ils sont concave ou convexe ??

Merci d'avance

Posté par
Priam
re : Optique : Deux miroirs sphériques en regard 26-10-09 à 09:06

Quand on place un objet au centre d'un miroir sphérique concave, celui-ci en donne une image symétrique de l'objet par rapport à l'axe optique.

Si on place devant ce miroir un second miroir sphérique concave dont le centre coïncide avec celui du 1er miroir, il donnera de ladite image une image qui coïncidera avec l'objet initial.

Cela semble répondre à ce qui est demandé dans l'énoncé.

Posté par
Djex
re : Optique : Deux miroirs sphériques en regard 26-10-09 à 09:38

Mais si le centre des 2 miroirs coincide alors les miroirs sont confondu (car les rayons sont les mêmes) donc j'pense pas que c'est ca ou alors j'ai mal compris ...

Posté par
Djex
re : Optique : Deux miroirs sphériques en regard 26-10-09 à 11:05

Ah yeah c'est bon j'ai fais le dessin sur cabri et j'trouve bien que si on met l'objet sur le centre et donc les miroirs l'un en face de l'autre avec leur centre de confondu ont retrouve une image confondue avec l'objet initial !!!

Mais franchement en DS j'aurais jamais su trouvé ca ... je ne sais pas si avec les calculs ont peu arrivé a ce résultat ...



Mentions légales - Retrouvez cette page sur l'île de la physique - chimie
© digiSchool 2025

Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !