Inscription / Connexion Nouveau Sujet
Niveau licence
Partager :

Mouvement circulaire non-uniforme

Posté par
bosonattentif
11-07-19 à 11:09

Bonjour! Je refais actuellement des exercices de mécanique dans le but d'animer des ateliers d'été de remédiation pour des étudiants de 1ère année de fac en physique, et je bûche sur un exercice (probablement très basique, mais comme cela fait longtemps que je n'ai plus fait de mécanique classique, je suis un peu perdue) sur un mouvement circulaire non-uniforme. Voici l'énoncé:
Le module de la vitesse d'une automobile roulant sur une piste circulaire de rayon 50m augmente uniformément dans le temps. Lorsque l'automobile se trouve à l'est du centre, le module de son accélération totale est de 10 m/s2, à 37o ouest par rapport au nord .

Une première sous-question demande de calculer l'accélération normale et tangentielle, ce que je fais par projection vectorielle. Cela me donne an=6 m/s2 et at=8 m/s2.

C'est la 2e sous-question qui pose problème. Je dois déterminer combien de temps il faudrait pour que la voiture revienne au même point. Je sais que je dois trouver une valeur numérique de 7 s à priori.
J'ai essayé de résoudre cela en obtenant une expression de la position de la voiture en fonction du temps, de la vitesse initiale au niveau de "l'est du centre" (que je calcule à partir de l'accélération  normale an = v2/R) et du module de l'accélération, par intégration de l'expression de la vitesse qui augmente uniformément.
Mais en résolvant pour le temps, je ne trouve pas la bonne valeur.

Si quelqu'un pouvait m'apporter une aide, ou une autre piste de réflexion, cela me rassurerait beaucoup.  La solution est certainement toute bête, mais quand on est engagé dans une certaine voie, il est parfois difficile de voir d'autres moyens Il y a peut-être d'autres données du problème que je n'ai pas exploitées.

Merci!

Posté par
vanoise
re : Mouvement circulaire non-uniforme 11-07-19 à 11:19

Bonjour
Les relations entre abscisses, vitesse et accélération valides pour un mouvement rectiligne uniformément varié se transpose aux valeurs angulaires pour un mouvement circulaire uniformément varié ; je te rappelle les trois formules de base :
mouvement rectiligne :

v=a.t+v_{o}
 \\ 
 \\ x=\frac{1}{2}a.t^{2}+v_{o}.t+x_{o}
 \\ 
 \\ v^{2}-v_{o}^{2}=2a.\left(x-x_{o}\right)

Mouvement circulaire :

\dot{\theta}=\ddot{\theta}.t+\dot{\theta_{o}}
 \\ 
 \\ \theta=\frac{1}{2}\ddot{\theta}.t^{2}+\dot{\theta}_{o}.t+\theta_{o}
 \\ 
 \\ \dot{\theta}^{2}-\dot{\theta}_{o}^{2}=2\ddot{\theta}.\left(\theta-\theta_{o}\right)

Posté par
bosonattentif
re : Mouvement circulaire non-uniforme 11-07-19 à 11:33

Merci de votre réponse! C'est en effet l'expression (pour theta) que j'ai utilisée. Comme je veux que la voiture revienne au même point, je me suis dit (logiquement?) que \theta - \theta_{0}=0. Pour \dot{\theta}, je remplace par la valeur trouvée, comme je le disais, grâce à l'accélération normale.

Je me trompe sûrement?

Posté par
sanantonio312
re : Mouvement circulaire non-uniforme 11-07-19 à 12:01

Bonjour
Ne serait-ce pas plutôt \theta -\theta _0=2k\pi ?
Avec k=1 pour le premier passage au point initial...

Posté par
bosonattentif
re : Mouvement circulaire non-uniforme 11-07-19 à 12:16

Ah oui, je crois bien que vous avez raison! Merci
Je ne trouve pas encore la bonne valeur par contre :/  Je vais continuer à chercher

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Mentions légales - Retrouvez cette page sur l'île de la physique - chimie
© digiSchool 2019

Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !