Bonjour,
Je bloque sur ce QCM :
"Lorsqu'un barreau aimanté est introduit à l'intérieur d'une bobine reliée à un voltmètre, la valeur maximale de la tension mesurée :
a) dépend de la vitesse de déplacement de l'aimant,
b) dépend du flux magnétique,
c) ne dépend pas des caractéristiques de la bobine,
d) dépend du pôle nord ou sud introduit en premier lieu dans la bobine."
Je pensais que la proposition exacte serait la b) mais il s'agit de la a).
Pouvez-vous m'expliquer avec quelques détails ?
De plus, si je raisonne suivant a), alors si l'aimant est introduit de façon très très lente alors aucun flux magnétique n'est engendré et le voltmètre indiquera 0 alors si je comprend ?
Y a-t-il une formule qui reprend U et la vitesse d'introduction d'un aimant ?
Merci
Bonsoir
Tu as sans doute étudié l'expression de la force électromotrice induite par induction.
Tu as aussi étudié en math et sans doute aussi en mécanique, la signification d'une dérivée par rapport au temps...
Je te laisse réfléchir. La proposition a) est correcte ; la proposition d) est un peu ambiguë...
Bonsoir Vanoise,
Le phénomène d'induction est brièvement expliqué dans le support sur lequel j'étudie et pour le moment je ne connais que la loi de Lorenz et celle de Laplace ; j'ai néanmoins trouvé ceci sur internet concernant l'induction :
- =
/
t ;
- = B.S.cos
Si c'est à la première formule dont vous faisiez allusion, je vois encore moins pourquoi la b) ne serait pas bonne car la formule reprend le fait que la tension dépend d'une variation du flux magnétique
.
(Avec la deuxième formule, je n'ai pas su tirer de conclusion).
D'accord avec la première formule. La seconde est fausse ; il s'agit de l'expression du flux magnétique à travers un circuit plan de surface d'aire S placé dans un champ magnétique uniforme de vecteur de norme B :
= B.S.cos(
)
Pour obtenir une fém induite, il faut donc faire varier le flux en fonction du temps. Plus l'aimant se déplace vite, plus la durée
t de la variation de flux est courte donc plus la valeur absolue de la fém induite est grande.
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :