Bonjour j'ai besoin d'aide pour un exercice que je n'arrive pas à terminer voici l'énoncé :
Un skieur initialement immobile descend une pente lisse de 20m de dénivellement verticale. Cette pente donne sur un terrain horizontal rugueux où le coefficient de frottement cinétique entre les skis et la neige est évalué à 0,21.
Quelle distance parcourt le skieur sur la surface horizontale avant de s'arrêter?
Alors voici ce que j'ai fais:
Trajet de A à B (A correspond au point le plus haut où le skieur est immobile, B correspond au bas de la pente) : j'applique le théorème de l'énergie cinétique pour trouver la vitesse au point B , je trouve comme valeur pour pour la vitesse au point B =sqrt(2*g*h)
Mais ensuite je ne vois pas ce qu'il faut faire.. Merci d'avance pour votre aide !
Salut,
Je te conseillerais de commencer par un schéma de la situation, établissant le bilan des forces appliquées au système.
Ensuite, le théorème de l'énergie cinétique donne (A = position initiale étudiée, B = position finale étudiée) : pour réaction normale du support
réaction tangentielle du support
poids du système étudié.
La relation que tu trouves me semble étrange ...
Bonjour,
Tu appliques le théorème de l'énergie cinétique entre B et C
C étant le point d'arrêt du skieur.
Bonsoir à tous! J-P pourquoi l'énergie cinétique en B se transforme en travail de la force de frottement ? Et comment trouve tu cette formule pour la force de frottement F=O,21*m*g ?
gbm j'ai trouvé cette relation comme ceci : 1/2mVb²-1/2Va²=m*g*h , mgh étant le travail du poids car ici pour la descente seule le poids travail car la pente est lisse.
Ensuite -1/2Va est nulle car la vitesse au point a vaut 0, il reste 1/2m*Vb=m*g*h après simplification je tombe sur Vb=sqrt(2*g*h)
@evil02300 : OK, dans ce cas c'est correct, je n'avais pas vu que la pente était "lisse", au temps pour moi !
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :