Bonjour,
Je n'arrive pas à faire l'exercice suivant:
Une solution de N2O5 est plongée dans du CCl4 à t=0 et T=45°C.
N2O5(dissous) -> N2O4(dissous) +1/2 O2(g). Effectuée dans ces conditions, la réaction de décomposition est du premier ordre par rapport à N2O5. N2O4 se transforme partiellement en NO2, mais ces deux composés sont solubles dans CCl4 et seul le O2 se dégage. Le volume de gaz ainsi recueilli ( à 25°C, sous 1 atm) vaut 19 cm^3 après 40 min et 35 cm^3 après un temps infini. Calculer la constante de vitesse k et le temps de demi-réaction.
Je sais qu'une réaction d'ordre 1 est sous la forme v=k[N2O5], que [N2O5]=[N2O5]t=0 .exp(-kt) et que t1/2=ln2 /k. Mais je ne vois pas comment trouver k, est-ce que vous pouvez m'aider SVP ?
Bonjour
En supposant le volume de la solution fixe, en multipliant par ce volume V le terme de droite et le terme de gauche de ton égalité, on peut écrire :
n=no.exp(-k.t)
avec :
n : quantité restante de N2O4 à la date t ;
no : quantité initiale de N2O4.
Connaissant la température et la pression et en assimilant le dioxygène à un gaz parfait, tu peux déterminer les quantités de O2 formées. Remplir alors un tableau d'avancement te permet d'obtenir no et n à la date t=40min. Il te reste alors à appliquer la formule ci-dessus pour obtenir k.
D'accord, en appliquant la loi des gaz parfait à t=40min, je trouve n(40)=0,78mol et à t=infini je trouve n(infini)= 1,43 mol. Soit x l'avancement molaire, à t=infini, n0-2x=0 et x=1,43 donc n0= 2,86 mol. Et à t=40, n=n0-2x avec x= 0,78 mol donc n=1,36 mol.
k=(ln(n0/n)/t(=40min))=0,019 min^-1
Attention : avec tes notations, la quantité de N2O5 restante s'écrit : (no-½x).
A 25°C sous 1,013.105Pa, le volume molaire d'un gaz parfait est d'environ 24,5L/mol.
19mL de gaz représente donc une quantité très inférieure à une mole.
Je te laisse rectifier.
PS : dans mon message du 20-10-19 à 19:08, j'ai écrit par étourderie N2O4 à la place de N2O5. Compte tenu du contexte, tu as rectifié de toi-même : tant mieux mais toutes mes excuses tout de même !
Ah oui effectivement, j'ai mis, dans la loi des gaz parfaits, le volume en litre et non en m^3...
Pour x je trouve 7,77.10^-4 mol et x max = 1,43.10^-3 mol.
n0-x max = 0 donc n0=x max et n=n0-x.
k=ln(n0/n)/t=0.015 min ^-1
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :