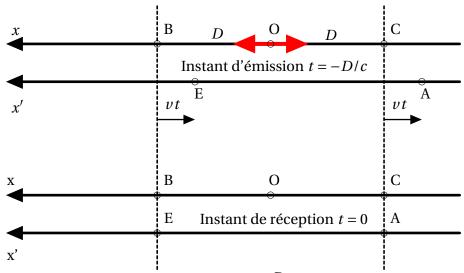
Synchronisation



Dans \mathcal{R} , on émet une impulsion à $t=-\frac{D}{c}$ de O, milieu de AB, de manière à arriver en C et B à t = 0 (qui sera donc l'instant initial de synchronisation) et que A=C et B=E.

Dans \mathcal{R}' l'impulsion a lieu à t' = 0.

Dans
$$\mathscr{R}'$$
 l'impulsion a lieu à $t'=0$.

A $t=-\frac{D}{c}$, A était à $OA=D+v\frac{D}{c}$ de O, et E était à $OE=D-v\frac{D}{c}$ de O.

L'instant de réception de A dans \mathscr{R}' est donc $t'_{RA}=\frac{OA_{\mathscr{R}'}}{c}=\gamma\frac{D}{c}+\gamma\frac{vD}{c^2}$.

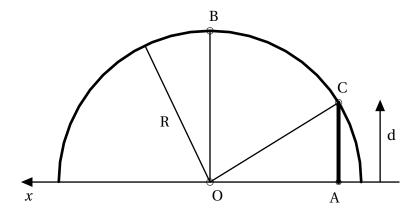
L'instant de réception de D dans \mathscr{R}' est donc $t'_{RE}=\frac{OE_{\mathscr{R}'}}{c}=\gamma\frac{D}{c}-\gamma\frac{vD}{c^2}$.

L'instant de réception de A dans
$$\mathscr{R}'$$
 est donc $t'_{RA} = \frac{OA_{\mathscr{R}'}}{c} = \gamma \frac{D}{c} + \gamma \frac{vD}{c^2}$.

L'instant de réception de D dans
$$\mathscr{R}'$$
 est donc $t'_{RE} = \frac{O\tilde{E}_{\mathscr{R}'}}{c} = \gamma \frac{\tilde{D}}{c} - \gamma \frac{\tilde{v}D}{c^2}$.

La différence de temps entre E et A est donc
$$t'_{RA} - t'_{RE} = \gamma \frac{2vD}{c^2} \neq 0$$
.
Conclusion : ce qui est simultané dans \mathscr{R} (émission B C) ne l'est pas dans \mathscr{R}' (E A).

Calculs



Représentation à t=0. Emission en C et B de deux photons en direction de O. Origine en O. Axe des x vers la gauche dans le sens de déplacement du baton OA. \mathcal{R} lié au cercle, \mathcal{R}' lié au baton.

$$R' = OA = \sqrt{R^2 - d^2}$$

$$v = \frac{R'}{R}c = c\frac{\sqrt{R^2 - d^2}}{R}$$
 (A arrive en O quand le photon en provenance de B y arrive).
Soit $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{1}{\sqrt{1 - (R^2 - d^2)/R^2}} = \frac{R}{d}$

Point A

$$x_A(t) = -R' + v \cdot t = ct \frac{\sqrt{R^2 - d^2}}{R} - \sqrt{R^2 - d^2} \, ; \, x_A' = -\gamma R' = -\frac{R\sqrt{R^2 - d^2}}{d}$$

Point C

$$y_C = d$$
 et $x_C = -R' = -\sqrt{R^2 - d^2}$

Emission

Dans
$$\mathscr{R}$$
: $t_{CE} = t_{BE} = 0$

$$t'_{CE} = \gamma \left(t_{CE} - \frac{vx_C}{c^2} \right) = \frac{R^2 - d^2}{cd}; t'_{BE} = 0.$$

Il y a bien écart de synchronisation dans \mathscr{R}' .

Réception

En O dans
$$\mathscr{R}$$
: $t_{CO} = t_{BO} = \frac{R}{c}$

Dans \mathscr{R}' , $t'_{CO} = \gamma \left(t_{CO} - \frac{x_O}{c} \right) = \gamma \frac{R}{c} = \frac{R^2}{cd}$; $t'_{BO} = \frac{BA(\mathscr{R}')}{c} = \frac{\sqrt{R^2 + {x'_A}^2}}{c} = \frac{R^2}{dc}$ OK!

Vérification

$$\delta t'_{CO} = t'_{CO} - t'_{CE} = d/c \text{ OK!}$$