

Tronc commun PET -PMP1^{ère} année Cours PHYSIQUE Session 1, 3 décembre 2018 - Durée 3h

Une rédaction soignée et concise sera appréciée, et il pourra en être tenu compte.

Rappels de constantes qui peuvent être utiles :

 $h = 6.62 \times 10^{-34} \text{ J.s} \qquad k_B = 1.\bar{38} \times 10^{-23} \text{ J.K}^{-1} \qquad m_e = 9.1 \times 10^{-31} \text{ kg} \qquad e = -1.6 \times 10^{-19} \text{ C} \qquad c = 3 \times 10^8 \text{ m/s}$

Questions de cours façon QCM (4 points)

Pour chaque question vous devrez choisir et reporter sur votre copie au moins une réponse, en effet, il est possible que plusieurs réponses soient justes parmi celles proposées.

Barème : 1 point par question si vous avez trouvé toutes les réponses justes, 1/2 point pour une réponse juste partielle, -1/2 point par réponse fausse, aucune réponse : 0 point.

- 1. Un état de diffusion pour une particule quantique :
 - a) est un état pour lequel cette particule ne peut évoluer que dans une région finie de l'espace.
 - b) est un état pour lequel l'énergie de cette particule est supérieure au potentiel qu'elle subit.
 - c) inclut les situations où cette particule est confinée et possède un spectre d'énergie discret.
 - d) est un état pour lequel cette particule peut évoluer dans tout l'espace.
 - e) décrit la situation de l'effet tunnel.
- 2. La fonction de distribution de Maxwell-Boltzmann:
 - a) s'applique toujours aux photons.
 - b) s'applique si le nombre de particules par unité de volume est très inférieur à la densité quantique.
 - c) s'applique à condition que la distance inter-particulaire soit grande devant la longueur d'onde de *de Broglie*.
 - d) vaut 1 à T = 0 K, lorsque le niveau d'énergie est inférieur au potentiel chimique.
- 3. Pour un système de particules, les fonctions de distribution de Fermi-Dirac, de Bose-Einstein et Maxwell-Boltzmann :
 - a) donnent le nombre d'états possibles qui se trouvent à une énergie comprise entre E et E+dE, avec dE arbitrairement petit.
 - b) donnent le nombre moyen de particules qui occupent un état quantique d'énergie *E* à une température donnée.
 - c) tendent vers l'infini quand l'énergie E du système tend vers l'infini.
 - d) tendent vers zéro quand l'énergie E du système tend vers l'infini.

4. L'énergie de Fermi :

- a) est définie dans un métal par le dernier niveau d'énergie occupé par les électrons à T = 0K.
- b) est définie par le dernier niveau d'énergie occupé par les photons.
- c) est l'énergie moyenne des électrons.
- d) est égale au potentiel chimique des électrons.

Problème 1 : pigments organiques (9 points)

Nous nous intéressons dans ce problème à certains pigments organiques qui sont constitués d'ions linéaires $(C_n H_{n+2})^-$ de la forme (exemple pour n=5):

$$(CH_2 \cdot \cdot \cdot CH \cdot \cdot \cdot CH \cdot \cdot \cdot CH_2)^-$$

Un ion de ce type contient un nombre impair n d'atomes de carbone équidistants séparés par la distance d = 1.40 Å et n+1 électrons qui se déplacent <u>librement</u> et indépendamment les uns des autres le long de l'ion. Ils sont maintenus dans cette structure à une dimension par un puits de potentiel :

$$V(x) = \begin{cases} +\infty, & x < 0 \text{ ou } x > L_n \\ 0, & 0 \le x \le L_n \end{cases}$$

avec $L_n = nd$. (En toute rigueur, $L_n = (n-1)d + 2b$, b représentant les effets de bord ; l'expérience montre que le choix b = d/2 est acceptable).

- 1. On souhaite déterminer les niveaux d'énergie ε_ℓ d'un électron de masse m_e dans ce potentiel V(x).
 - a. Ecrire l'équation de Schrödinger stationnaire et donner la forme générale des fonctions d'ondes solutions.
 - b. En déduire la relation de dispersion qui relie l'énergie de l'électron et le vecteur d'onde \vec{k} .
 - c. En utilisant les conditions aux limites nulles en x=0 et en $x=L_n$, établir la relation de quantification du module du vecteur d'onde \vec{k} , que l'on exprimera au moyen du nombre quantique ℓ . Donner, en le justifiant, toutes les valeurs possibles de ℓ .
 - d. Montrer alors que les niveaux d'énergies se mettent sous la forme

$$\varepsilon_{\ell} = \frac{\pi^2 \hbar^2 \ell^2}{2m_e L_n^2}$$

- 2. On s'intéresse à partir d'ici au système des n+1 électrons de l'ion
 - a. Sachant que les n+1 électrons sont indépendants, donner l'expression de l'Hamiltonien du système.
 - b. Quelle propriété vérifie cet Hamiltonien?
 - c. Comment peut-on exprimer les fonctions d'onde solutions de l'équation de Schrödinger stationnaire et l'énergie du système des *n*+1 électrons dans ce cas.

- 3. Le principe de Pauli impose le fait qu'il ne peut pas y avoir plus de deux électrons par niveau d'énergie.
 - a. Montrer que l'énergie E_0 de l'état fondamental de l'ensemble des n+1 électrons s'écrit :

$$E_0 = \frac{\pi^2 \hbar^2}{24 m_e L_n^2} (n+1)(n+2)(n+3)$$

On donne $\sum_{\ell=1}^{N} \ell^2 = \frac{N(N+1)(2N+1)}{6}$, avec N un entier.

- b. Exprimer $E_1 E_0$ en fonction de n, où E_1 est l'énergie du premier état excité.
- 4. On s'intéresse à présent à la longueur d'onde notée λ_n de la lumière absorbée lors d'une transition de l'état fondamental au premier état excité d'un ion n.
 - a. Quelle est la quantité d'énergie hv absorbée lors de cette transition ?
 - b. En déduire λ_n et l'exprimer en fonction de la longueur d'onde de Compton de l'électron, $\lambda_c = h/(m_e c) = 2.426 \times 10^{-2} \text{Å}$.
- 5. On observe expérimentalement que les ions $(C_n H_{n+2})^-$ avec n=9, n=11 et n=13 absorbent respectivement dans le bleu $(\lambda_9 \approx 4700 \text{ Å})$, le jaune orangé $(\lambda_{11} \approx 6000 \text{ Å})$ et le rouge $(\lambda_{13} \approx 7300 \text{ Å})$.
 - a. Le modèle du puits infini développé ici rend-il compte de ces observations expérimentales ?
 - b. Les ions $n \le 7$ sont-ils colorés ? Commenter.
 - c. Commentez les propriétés d'absorption des ions $n \ge 17$.

Problème 2 : Densité d'états (puits infini à trois dimensions) (7 points)

On représente un métal par un cube de côté L de taille macroscopique. Les électrons de conduction de ce métal forment un gaz parfait et sont piégés dans ce puits infini à 3 dimensions.

- 1. Questions préliminaires.
 - a. L'est une grandeur macroscopique, que peut-on dire sur les niveaux d'énergie?
 - b. Pourquoi les électrons de conduction sont-ils assimilables à un gaz parfait ?
 - c. Quelle est la nature quantique des électrons ? Que cela implique-t-il ?
- 2. Rappeler la relation qui relie l'énergie E d'un électron à son vecteur d'onde \vec{k} dans le cas présent. On rappelle que les valeurs que peut prendre le vecteur d'onde associé à ces niveaux sont : $\vec{k} = \frac{\pi}{L} (n_x, n_y, n_z)$ où (n_x, n_y, n_z) sont des entiers strictement positifs. Les points repérés par les vecteurs \vec{k} forment ainsi un réseau cubique dans le premier octant de *l'espace des* \vec{k} (espace, appelé également espace réciproque, où chacun de ces vecteurs \vec{k} est représenté par un point de coordonnées (k_x, k_y, k_z)).

- 3. On souhaite déterminer la densité d'états.
 - a. Donner sa définition générale.
 - b. Quel est le "volume" disponible par point \vec{k} , autour de chaque point \vec{k} du réseau ?
 - c. Quel est le "volume" disponible (toujours dans cet espace réciproque) entre les deux surfaces d'isoénergie E et E+dE?
 - d. En déduire la densité d'états g(E) en fonction de l'énergie lorsqu'on ne tient pas compte du spin de l'électron.
 - e. Comment doit-on prendre en compte le spin de l'électron dans la suite des calculs?
- 4. On s'intéresse maintenant à l'énergie de Fermi E_F .
 - a. Donner la définition du niveau de Fermi pour un métal.
 - b. En supposant qu'il y a N électrons dans le métal, déterminer l'expression de E_F , énergie de Fermi.
- 5. En déduire l'expression de :
 - a. la norme k_F du vecteur d'onde ainsi que la longueur d'onde λ_F associée
 - b. la vitesse *v_F* d'un électron au niveau de Fermi
 - c. la température équivalente T_F au niveau de Fermi
- 6. Applications numériques : pour l'aluminium le nombre d'électrons par unité de volume n est égal à 18.1×10^{28} m⁻³.
 - a. Comparer n à la densité quantique \tilde{n}_q . Conclure.
 - b. Calculer l'énergie de Fermi *E*_F exprimée en eV.
 - c. Quelle est la valeur de la vitesse d'un électron d'énergie E_F ?
 - d. A 300 K le temps moyen entre deux collisions noté τ est égal à 0.8×10^{-14} s. Calculer la résistivité de l'aluminium.
- 7. Concernant l'occupation des niveaux d'énergie :
 - a. Que se passe-t-il quand la température est non nulle ?
 - b. Illustrer qualitativement le phénomène sur un schéma où apparaîtra, entre autres, E_F et k_BT .
- 8. Écrire l'intégrale qui permet de calculer l'énergie totale de l'ensemble des électrons libres dans le cas général $(T \neq 0K)$. On définira clairement toutes les grandeurs introduites. (On ne demande pas de calculer cette intégrale).